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Abstract. We investigate the time-dependent transport properties of quantum well on the situation of
nonlinear bias, where a thin potential well layer is inserted in the main quantum well. In our calculations,
we consider the effects from all kinds of phonon interactions in the device. We find that the charge redis-
tribution and electron motion in the whole structure play an important effect on the final current-voltage
(I-V) curve. We also find an evident current hysteresis region and current high-frequency oscillation with
time in this particular region. The results show that the inserted potential well layer can make the current
hysteresis width narrower than that in the single quantum well structure, and it also damps the current
oscillation. Due to the existence of the inserted layer, the plateau structure of I-V curve found in the single
quantum well disappears.

PACS. 73.40.Gk Elasticity, elastic constants – 73.23.Hk Coulomb blockade; single-electron tunneling –
73.50.-h Electronic transport phenomena in thin films

1 Introduction

Recently, the double-barrier resonant tunneling nanos-
tructure has been extensively studied due to their var-
ious potential device applications and their significance
in the study of confined structures. There are many im-
portant experimental researches, which include the ob-
servation of tristability [1,2], the spatial variation of the
quantum-well wavefunction [3], spin-split states [4], and
excitonic dark states in the quantum well [5]. Comparing
with other nanostructures, double-barrier structure can
be controlled very easily and can be formed on a large
scale, so this particular structure is considered to be the
basis for the future nanodevices. Both dc and ac trans-
port characteristics of the system have been studied, but
most of experimental researches focus on the dc transport
properties, such as linear and nonlinear response, as well
as time-response and carrier leakage [6–8]. In the linear
transport regime, current fluctuations are generally a re-
sult of quantum interference effects and consequently are
governed by the phase coherence of electrons. The phys-
ical properties of this linear regime are very clear. Now
the current transport research focuses on the nonlinear
transport properties. Some of these studies are based on
the simulations of a realistic device using the detailed nu-
merical procedures [9,10], while others are based on sim-
ple discrete models [11,12]. The effect of time-dependent
transient current and charge density variations in the case
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of the nonlinear bias is very important both in ac and dc
conductance. These time-dependent nonlinear characteris-
tics may find the application in the future high-frequency
device.

Early at the end of the 1980s the experimental current-
voltage (I-V) characteristics of resonant transport through
a double-barrier AlGaAs/GaAs/AlGaAs quantum-well
shows bistability and a plateaulike structure [13]. The nor-
mal Chang-Esaki-Tsu (CET) theory [14] cannot explain
the complicated experimental results. This original exper-
imental results were explained by the current oscillations
in the external circuit [15]. When the experimental con-
ditions were improved to eliminate these oscillations, the
hysteresis was removed and a smooth I-V curve with nega-
tive differential resistance region was recovered [16]. How-
ever, along with samples were made with higher or wider
collector barriers specially designed to enhance charge
buildup in the central QW [17–19], both bistability and
hysteresis in the I-V curves appear again, which is ex-
plained theoretically by the electrostatic feedback caused
by the space-charge buildup in the QW [20]. Later numeri-
cal simulations suggested that there may be intrinsic high
frequency oscillations associated with coupling between
the central QW and the emitter QW (formed under bias),
and this coupling affects the bistability and plateaulike
structures [9,10]. In recent years, the current hysteresis
has also been found in the quantum wells of many other
materials [21–25].

Now, some new structures have been fabricated, such
as resonant tunneling diodes that incorporate a single
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layer of InAs quantum dots in the center of the GaAs
quantum well [26,27], as well as a monolayers InAs poten-
tial well or AlAs potential barrier [28,29]. This inserted
layer can affect the charge redistribution and has an im-
portant effect on the current transport in the device. There
are many other studies about physical properties of this
quantum well with the inserted layer, which include the
quantum Hall liquid transitions [30], the magnetotunnel-
ing [31], and luminescence spectra [32]. In this paper, we
study a thin potential well layer embedded in a GaAs main
quantum well, and consider the effects of potential well
layer on the electronic charge density redistribution and
electron motion.

This paper is organized as follows: In Section 2, we
briefly describe the numerical technique used in this pa-
per. The numerical results and discussion about the time-
dependent transport and electron and current distribution
are presented in Section 3. The conclusion of this paper is
given in Section 4.

2 Methods

The response of the system to external disturbances shows
many interesting physical phenomena. For example, a
longitudinal electric field, applied to a charged system,
will lead to a flow of current. In many-body system of
solid state physics, the conventional transport equation
is Boltzmann equation, which use distribution function
f (p,R,T ) to describe the particles motion. But Boltz-
mann equation is appropriate only for systems with weak,
short-ranged forces and can not be applied in the nanos-
tructures. The most significant feature of nanodevices is
their small size. Due to the effect of the small size of nan-
odevices, some concepts concerning transport in nanode-
vices should be modified, such as scattering from phonons,
impurities, interfaces, and electrons, dynamical screen-
ing, etc. In such devices, the wavelike nature of carri-
ers can dominate the main characteristics of the devices,
and the nanodevices exhibit very desirable device prop-
erties such as low power, high-density integration, high
speed, and high-cut off frequency. Furthermore, because
of the small dimension of the quantum devices, a very
small bias voltage applied on the device can cause a very
strong electric field in the devices. Thus, the carriers in the
device are in a state far from the equilibrium state. Be-
sides this, the transport processes become non-Markovian
due to memory effects induced by scattering. Therefore,
nonequilibrium and nonlinear quantum transport theo-
ries, which suitably dealt with strong fields and scat-
terings, are needed to describe the transport of carriers
in nanodevices. In the nanodevice simulation, there are
two kinds of simulation methods to be used. The first
is the Monte Carlo method, which is basically a statis-
tical method. The second is the method based upon phys-
ical transport equations, which include the density matrix
method, Wigner distribution function method, the numer-
ically solving Schrödinger equation method, and Green’s
function method. We use Wigner function method in our

Fig. 1. The conduction-band diagram of device under certain
bias.

simulation of nanodevices and will introduce it in the
following.

We consider an AlGaAs/GaAs/AlGaAs main quan-
tum well with thin InAs potential well layer, and the
conduction-band diagram under certain bias is shown in
Figure 1. The presence of the spacer layer before the left
barrier ensures that transport occurs from 2D- and 3D-
electron gas coexisted in an accumulation layer at the
left-hand emitter barrier [33]. The potential difference be-
tween the emitter and drain is roughly proportional to
the total voltage drop V across the device. The middle
potential well is the inserted layer which can modulate
the electron motion in the main well. This potential is the
self-consistent results from the Wigner dynamic equation
and Poisson equation.

Our method is a self-consistent calculation to the
Wigner-Possion equation. The Wigner function formula-
tion of quantum mechanics has been used. It has many
useful characteristics in the simulation of quantum-effect
electronic devices, including ability to handle dissipated
and open-boundary systems naturally. The Wigner func-
tion equation (WFE) can be derived in several ways [34].
Since the Wigner function can be defined by nonequi-
librium Green’s functions, the WFE can also be derived
from the equation of motion of the nonequilibrium Green’s
function [35]. With the lowest-order approximation to
the scattering, the time-dependent dynamic equation for
quantum transport is

∂f (x, k)
∂t

= − �k

m∗
∂f (x, k)
∂x

− 1
�

∫ ∞

−∞

dk′

2π
f (x, k′)V (x, k − k′) +

∂f (x, k)
∂t

∣∣∣∣
coll

, (1)
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where the kernel of the potential operator is given by

V (x, k − k′) =
∫ L

0

dr sin [(k − k′) r] [U (x+ r/2)

−U (x− r/2)] . (2)

m* is the electron effective mass, x and r is the
Wigner-Weyl transformation coordinate [31], and U is
the conduction-band edge. f (x, k) is the Wigner function,
which is defined as

f (x, k) =
∫
dr ρ (x+ r/2, x− r/2) exp(−ikr), (3)

where ρ is the electron density operator. Appropri-
ately treating scattering in semiconductors is very im-
portant for getting reasonable simulation results. Recent
research shows that the computation burden associated
with detailed consideration of electron-phonon scattering
is formidable. The amount of computation time would be
too huge if we treated the scattering in detail. Thus, we
employ the relaxation-time approximation to deal with
the scattering in this paper. In terms of the relaxation
time approximation to scattering, the collision terms in
the above equation may be written as [9]

∂f (x, k)
∂t

=
1
τ

[
f0 (x, k)∫
f0 (x, k) dk

∫
f (x, k) dk − f (x, k)

]
,

(4)
where τ is the relaxation time and f0 is the equilibrium
Wigner function. The boundary conditions are

f (0, k) |k>0 =
m∗kBT

π�2

× ln
{

1 + exp
[
− 1
kBT

(
�

2k2

2m∗ − µ0

)]}
, (5)

f (L, k) |k<0 =
m∗kBT

π�2

× ln
{

1 + exp
[
− 1
kBT

(
�

2k2

2m∗ − µL

)]}
. (6)

Another important equation in our model is the Poisson
equation (PE)

d2

dx2
u (x) =

q2

ε
[Nd (x) − n (x)] , (7)

where ε is the dielectric permittivity, u(x ) is the electro-
static potential, q is the electronic charge, N d(x ) is the
concentration of ionized dopants, and n(x ) is the density
of electrons, which is given by

n (x) =
∫ ∞

−∞

dk

2π
f (x, k). (8)

The corresponding current density may be written as

j (x) =
∫ ∞

−∞

dk

2π
�k

m∗ f (x, k). (9)

To solve the WFE-PE equations, we must discretize
the simulation zone and these WFE-PE equations. The
details of the discretization of the WFE are well described
by Frensley and Jensen et al. [9,36]. So, only a summary
of the results is given here. We use the finite difference
method to solve the equation (1). Assuming the simulation
zone is between x=0 and x=L, the zone may be discretized
as follows:

f (x, k) = f (xi, kj) = fij . (10)

The coordinate x is discretized as

xi = (i− 1)L/ (Nx − 1) = (i− 1) δx δx = L/Nx.

The k is discretized as

kj = (2j −N − 1) δk/2, δk = π/ (Nδx) .

N x and N are the number of x and k points on a grid
in phase space. Using the second-order upwind difference
scheme to discretize the position derivative, we get

T · f = −�
2k

m∗
∂f

∂x

= A (j)




f (i+ 2, j) − 4f (i+ 1, j) + 3f (i, j)

j ≤ N/2, kj < 0

−f (i− 2, j) − 4f (i− 1, j) − 3f (i, j)

j > N/2, kj > 0
(11)

where

A (j) =
�

2δk

4m∗δx
(2j − n− 1) , (12)

V · f =
N∑

j′=1

V (i, j − j′) f (i, j) , (13)

V (i, j) =
2
N

N/2∑
i′=1

sin
[
2π
N
i′j

]
[U (i+ i′) − U (i− i′)] ,

(14)

and

S · f =
�

τ


f (i, j) − δkf0 (i, j)

2πρ0 (i)

N∑
j′=1

f (i, j′)


 . (15)

Thus the discrete time-independent Wigner function equa-
tion is expressed as

[T + V + S] · f = BC (16)

BC is the value of Wigner function at the boundaries.
The time-dependent Wigner function equation can be
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written as
∂f

∂t
=
Ξ

i�
f, (17)

where operator Ξ is given by

Ξ = i (T + V + S) . (18)

T,V, and S are the drift, potential, and scattering terms,
respectively. The solution of this equation is

f (t+ δt) = exp
(
− iΞ

�
t

)
f (t) =

1 − iΞ

2�
t

1 +
iΞ

2�
t

. (19)

The equation may be written as

[−2�/δt+Ξ] [f (t+ δt) + f (t)] = −4�f (t) /δt. (20)

In the discretized equation, the drift term gives the bound-
ary condition, which does not change with time. Thus, we
have
[
−2�/δt+ Ξ̃

]
[f (t+ δt) + f (t)] = −4�f (t) /δt+ 2BC,

(21)
where Ξ̃ is the operator defined by equation (19) without
considering the boundary conditions of the Wigner func-
tion BC. In the whole calculation, we neglect the difference
of the dielectric functions in different region of the device
and the effective mass of electrons in the device.

Poisson equation (PE) is a highly nonlinear equation
and the discretization of the PE is trivial. It is not suit-
able to directly solve this equation in the iterative coupled
Wigner-Poisson equations. We consider the change of the
potential ψ = ψ0 + δψ. Substituting the change of poten-
tial into equation (7), we obtain

d2δU (x)
dx2

= −d
2δU0 (x)
dx2

+
q2

ε
(Nd − n (x)) . (22)

Discretizing the above equation in the device space do-
main, we have

− 1
2
δU (i− 1) + δU (i) − 1

2
δU (i+ 1) =

− 1
2
δU (i− 1)−U (i)+

1
2
δU (i+ 1)− q2∆x2

2ε
(Nd − n0 (x)) .

(23)

Incorporating the boundary condition
{
δU (0) = 0 δU (Nx + 1) = 0

U (0) = V0 U (Nx + 1) = Vb

(24)

the matrix form of the Poisson equation is written as

M · δU = P, (25)

where

M =




1 −1/2 0 · · · · · · 0
−1/2 1 −1/2 0 · · · 0

...

...
0 · · · 0 −1/2 1 −1/2
0 · · · · · · 0 −1/2 1



, (26)

and

δU =



δU(1)

...
δU(Nx)


 P =



P (1)

...
P (Nx)


 (27)

with

p (1) = −U (1) +
1
2
U (2)

− 1
2

[
q2∆x2

ε
(Nd − n0 (1)) − V0

]
(28)

p (Nx) = −1
2
U (Nx − 1) − U (Nx)

− 1
2

[
q2∆x2

ε
(Nd − n0 (Nx)) − Vb

]
. (29)

In our simulation, we first approximate the
conduction-band profile by a square well potential
and get n(x ) from equation (1) and equation (8). The
density of electrons is substituted into the Poisson
equation and then the new conduction-band profile

U (x) = u (x) +∆c (x) (30)

is obtained, where ∆c (x)is the offset of the band edge.
Using this new conduction-band profile at the next time
step, the Wigner function equation is solved again. This
iteration continues until a steady-state or a preassigned
time value is achieved by a simultaneous solution of both
equations (1) and (7).

3 Numerical results and discussion

The I-V characteristics in the single quantum well were
numerically studied by Zhao et al. [10]. Here we study
the quantum well with an inserted potential well layer.
The parameters used in our simulation are as follows.
The momentum and position spaces are broken into 134
and 160 points, respectively. The donor density is Nd =
2.0×1018 particles/cm3. The compensation ratio for scat-
tering calculations is 0.3, the barrier, main quantum well
and inserted potential well widths are 3, 5 and 1.38 nm,
respectively, the simulation box is 55 nm, the barrier po-
tential is 317 meV. The device temperature is 77 K, the ef-
fective mass of the electron is assumed to be constant and
equals 0.0667 m0. The doping extends to 3 nm before the
emitter barrier and after the collector barrier; the whole
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Fig. 2. I-V curves of the double-barrier structures, the data
are taken from the steady states of the simulation, which is the
time average value of current oscillation.

quantum well region is undoped, and the method of eval-
uating the relaxation time can be found in reference [35].

In order to study the effect of the inserted potential
well on the main quantum well structure, we first give
the results of the single quantum well without the in-
serted layer and calculate the I-V characteristic of the
resonant tunneling when the time-depended simulation
reaches steady state in forward and backward bias sweep.
Here, the mesh points of momentum and position spaces
are 72 and 86, respectively. The current values are ob-
tained by averaging over 2 ps time intervals. Our results
are shown in Figure 2. In this figure, we find the obvi-
ous plateaulike structure and a current hysteresis phe-
nomenon. Because of the space-charge buildup in the main
quantum well, the conductance band bottom of QW will
be increased, which makes the lowest-energy level in the
QW be driven up, and the corresponding position of the
peak of current will be shifted to the high bias.

Figure 3 shows the time-dependent current density
with bias voltage in forward bias sweep. The results show
that the current changes with the time, and an obvious
current oscillation appears in the region of plateau-like
structure, which is due to the coupling of the main well
and the spacer well before the emitter barrier. In order
to show clearly these current oscillations, Figure 4 gives
the current-time curves in different special bias voltages.
Figure 5 gives the electron density distribution of the
whole device in different bias, we can find the obvious
electron density distribution region in the spacer of emit-
ter when the bias lie in the plateaulike region, and these
electron density oscillations can lead to large fluctuation of
electron potential, this kind potential fluctuation can form
the quantum well structure in the emitter. Our calcula-
tions show that this special electron density distribution
changes with the time, which leads to a high-frequency
current oscillation and further affects the final current

Fig. 3. The current characteristics of double-barrier struc-
tures with time and bias voltages as parameters for the case of
forward bias sweep.

Fig. 4. The current-time characteristics of double-barrier
structures in different bias voltages for the case of forward bias
sweep.

value in steady situation. Of course, there is relaxation
time to form electron density distribution oscillation. A
coupling of the emitter quantum well and main quantum
well is formed and this coupling will further damp the de-
crease of the current with the increase of the bias to form
a current plateau structure. The plateau structure is re-
sults from time average of the current oscillation. If we do
not consider the self-consistent and time effect, there will
be no plateau structure in the case of forward bias sweep,
as shown in Figure 6. Figures 7 and 8 show the current
density and electron density distribution of the device in
the case of backward bias sweep, i.e., the bias changing
from high bias to low bias. In such situation, we cannot
find the obvious regular current oscillations and electron
density variation region. The main reason is that, in the
backward bias, there is no electron pre-accumulation in
the emitter. Now we investigate the effect of the inserted
potential well on the I-V curves, which can help us to
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Fig. 5. The local electron density distribution of double-
barrier structures with bias voltages as parameters, for the
case of forward bias sweep.

Fig. 6. I-V curves of the double-barrier structures in the
forward bias voltages. The data are taken from the time-
independent simulation.

understand the physical mechanism of electron transport
in low-dimensional device. Our studies show that the mid-
dle thin potential well layer can affect remarkably the
plateau structure and current oscillation.

In order to understand the effect from the inserted
layer, we calculated the I-V curve of the steady state of
the quantum well with the inserted potential well layer.
The calculated results of the final current are shown in
Figure 9. From the figure, it can be seen that comparing
with the single quantum well without the inserted layer,
there is no plateau structure, resonant bias is shifted to
the low bias voltage value, and the amplitude of peak cur-
rent is reduced about 8%. On the other hand, apart form
the main current peak, there is no new current peak in
the I-V curves, so this inserted layer does not lead to a
new bound state. But the I-V curve still shows current

Fig. 7. The current characteristics of double-barrier struc-
tures with time and bias voltages as parameters for the case of
backward bias sweep.

Fig. 8. The local electron density distribution of double-
barrier structures with bias voltages as parameters for case
of backward bias sweep.

Fig. 9. I-V curves of the double-barrier structures with the
inserted potential well, the data are taken from the steady
states of the simulation, which is the time average value of
current oscillations.
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Fig. 10. The current characteristics of device with time and
bias voltages as parameters, for the case of forward bias sweep.
The device is a double-barrier structure with the thin inserted
potential well layer.

Fig. 11. The local electron density distribution with bias
voltages as parameters for the case of forward bias sweep. The
device is a double-barrier structure with the thin inserted po-
tential well layer.

hysteresis phenomenon, the width of current hysteresis
curve is reduced in the device with the inserted poten-
tial well layer. This shows that the inserted layer not only
affect the electron behaviour in the main well, but also af-
fect the electron density oscillation in the emitter. This is
validated by the calculations of the current and local elec-
tron density distribution. In Figures 10 and 11, we show
the situation in the forward bias sweep. In Figure 10, the
results show that under certain bias there are still some
current oscillations with time. But comparing with the re-
sults of Figure 3, the obvious reduction of the amplitude
of the current oscillation has been found, and this current
oscillation lacks the regulation. Comparing to Figure 5, in
Figure 11, we do not find the electron density distribu-
tion oscillation in the emitter region, and when the bias
voltage passes the resonance bias, the electron buildup in
the main well disappears. All these phenomena show that

Fig. 12. The current characteristics of device with time and
bias voltages as parameters, for the case of backward bias
sweep. The device is a double-barrier structure with the thin
inserted potential well layer.

Fig. 13. The local electron density distribution with bias
voltages as parameters for the case of backward bias sweep.
The device is a double-barrier structure with the thin inserted
potential well layer.

the inserted potential well can affect the electron density
variation in main well and the emitter region. This is be-
cause that the potential well layer adjusts the energy level
of main QW and reduces the electron buildup in the main
QW. This effect leads to a rapid collapse of emitter QW in
the emitter and the current plateau disappears for the for-
ward bias sweep. So the electron buildup and the change
of electron density distribution in the emitter together af-
fect the final I-V curves. From the Figures 12 and 13, it
can be seen that in the backward bias sweep, the situ-
ation is similar to that in the forward bias sweep. But,
comparing with single quantum well shown in Figure 7,
the current curves show some oscillations in certain bias
voltage of the backward bias sweep. On the other side,
from Figures 11 and 13, the inserted layer does not affect
remarkably the electron accumulation in the main well for
the forward and backward bias sweep.
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4 Conclusion

For the quantum well device with the thin inserted poten-
tial well layer, by using a time-dependent finite-difference
technique, we numerically solved the coupled Wigner-
Poisson equations. Comparing to the normal single quan-
tum well device, the inserted potential well layer affects
strongly the electron density distribution and current
curves, which damps the formation of the potential well in
the emitter region and further affects the current oscilla-
tions. Therefore, the inserted potential well layer leads to
the plateau disappearing and current hysteresis curve nar-
rower. Using this inserted layer technique we can adjust
the resonant tunneling structure (RTS) device to show the
different degree of current hysteresis. We conclude that
any attractive potential will affect the width of the hys-
teresis of current and the current oscillation, which can
damp the formation of the current plateau. These results
can extend qualitatively to the case of the quantum well
with the quantum dot layer. All these show that in the
fabrication of the high-frequency device, we must reduce
the presence of the attractive potential impurities and
defection.
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